Emerging Researchers National (ERN) Conference

nsf-logo[1]

  • About
    • About AAAS
    • About the NSF
    • About the Conference
    • Partners/Supporters
    • Project Team
  • Conference
  • Abstracts
    • Abstract Submission Process
    • Presentation Schedules
    • Abstract Submission Guidelines
    • Presentation Guidelines
    • Undergraduate Abstract Locator (2020)
    • Graduate Abstract Locator (2020)
    • Faculty Abstract Locator (2020)
  • Travel Awards
  • Resources
    • App
    • Award Winners
    • Code of Conduct-AAAS Meetings
    • Code of Conduct-ERN Conference
    • Conference Agenda
    • Conference Materials
    • Conference Program Books
    • ERN Photo Galleries
    • Events | Opportunities
    • Exhibitor Info
    • HBCU-UP/CREST PI/PD Meeting
    • In the News
    • NSF Harassment Policy
    • Plenary Session Videos
    • Professional Development
    • Science Careers Handbook
    • Additional Resources
    • Archives
  • Engage
    • Webinars
    • Video Contest
    • Video Contest Winners
    • ERN 10-Year Anniversary Videos
    • Plenary Session Videos
  • Contact Us

Analyzing the Activity of Chemical Compounds Against Vibrio Cholerae Biofilms

Undergraduate #9
Discipline: Biological Sciences
Subcategory: Biomedical Engineering

Mahtab Waseem - Howard University
Co-Author(s): Patrick Ymele-Leki, Howard University, Washington, DC



Phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) is a multistep chemical process which regulates the intake and use of carbohydrates by bacteria. Bacteria growing through the use of nutrients, such as sugars, may form biofilms. Biofilms are multi-layered communities of bacterial cells that grow attached to one another. In addition to controlling sugar uptake by bacteria, the PTS regulates several cellular functions such as chemotaxis, glycogen metabolism, catabolite repression and the aforementioned biofilm formation. Using a chemical screen, this study identified small molecule compounds that promote the production of Vibrio cholerae biofilms. V. cholerae MO10 served as model organism. It was grown in the absence of chemical compounds as a negative control, while an altered strain lacking PTS activity served as a positive control. Growth kinetics was evaluated in absorbance-based microplate assays, and quantitative biofilm assays were performed in borosilicate glass tubes. All assays were monitored by spectrophotometry. Biofilm induction was confirmed by monitoring the growth of V. cholerae in the presence or absence of chemical compounds. Further assays are underway to elucidate the mechanism through which candidate compounds affect the formation of biofilms. These assays will determine whether or not biofilm induction occurs through interactions with the bacterial PTS. Success of this project will result in the identification and characterization of chemical agents that regulate biofilm formation by modulating activity of the bacterial PTS. This may lead to the development of novel microbial control strategies with applications in biological, medical, and pharmaceutical sciences.
Using a chemical screen, this study identified small molecule compounds that promote the production of Vibrio cholerae biofilms. V. cholerae MO10 served as model organism. It was grown in the absence of chemical compounds as a negative control, while an altered strain lacking PTS activity served as a positive control. Growth kinetics was evaluated in absorbance-based microplate assays, and quantitative biofilm assays were performed in borosilicate glass tubes. All assays were monitored by spectrophotometry. Biofilm induction was confirmed by monitoring the growth of V. cholerae in the presence or absence of chemical compounds. Further assays are underway to elucidate the mechanism through which candidate compounds affect the formation of biofilms. These assays will determine whether or not biofilm induction occurs through interactions with the bacterial PTS.

Success of this project will result in the identification and characterization of chemical agents that regulate biofilm formation by modulating activity of the bacterial PTS. This may lead to the development of novel microbial control strategies with applications in biological, medical, and pharmaceutical sciences.

Funder Acknowledgement(s): NSF (Research Initiation Award #1505301)

Faculty Advisor: Patrick Ymele-Leki, patrick.ymeleleki@howard.edu

Role: The Experiments, as well as Data Analysis

ERN Conference

The 2022 ERN Conference has been postponed.

Full Notice

What’s New

  • Congratulations to Zakiya Wilson-Kennedy on her 2021 AAAS Fellowship
  • Event Vaccination and Liability Policy
  • Webinars
  • Events|Opportunities
  • AAAS CEO Comments on Social Unrest, Racism, and Inequality
  • Maintaining Accessibility in Online Teaching During COVID-19
  • In the News
  • HBCU/CREST PI/PD Meeting

Conference Photos

ERN Conference Photo Galleries

Awards

ERN Conference Award Winners

Checking In

nsf-logo[1]

This material is based upon work supported by the National Science Foundation (NSF) under Grant No. DUE-1930047. Any opinions, findings, interpretations, conclusions or recommendations expressed in this material are those of its authors and do not represent the views of the AAAS Board of Directors, the Council of AAAS, AAAS’ membership or the National Science Foundation.

AAAS

1200 New York Ave, NW Washington,DC 20005
202-326-6400
Contact Us
About Us

The World's Largest General Scientific Society

Useful Links

  • Membership
  • Careers at AAAS
  • Privacy Policy
  • Terms of Use

Focus Areas

  • Science Education
  • Science Diplomacy
  • Public Engagement
  • Careers in STEM

 

  • Shaping Science Policy
  • Advocacy for Evidence
  • R&D Budget Analysis
  • Human Rights, Ethics & Law
© 2022 American Association for the Advancement of Science