• Skip to main content
  • Skip to after header navigation
  • Skip to site footer
ERN: Emerging Researchers National Conference in STEM

ERN: Emerging Researchers National Conference in STEM

  • About
    • About AAAS
    • About the NSF
    • About the Conference
    • Partners/Supporters
    • Project Team
  • Conference
  • Abstracts
    • Undergraduate Abstract Locator
    • Graduate Abstract Locator
    • Abstract Submission Process
    • Presentation Schedules
    • Abstract Submission Guidelines
    • Presentation Guidelines
  • Travel Awards
  • Resources
    • Award Winners
    • Code of Conduct-AAAS Meetings
    • Code of Conduct-ERN Conference
    • Conference Agenda
    • Conference Materials
    • Conference Program Books
    • ERN Photo Galleries
    • Events | Opportunities
    • Exhibitor Info
    • HBCU-UP/CREST PI/PD Meeting
    • In the News
    • NSF Harassment Policy
    • Plenary Session Videos
    • Professional Development
    • Science Careers Handbook
    • Additional Resources
    • Archives
  • Engage
    • Webinars
    • ERN 10-Year Anniversary Videos
    • Plenary Session Videos
  • Contact Us
  • Login

Synthesis and Characterization of CdS/CdSxSe1-x Nanowires

Undergraduate #320
Discipline:
Subcategory: Nanoscience

Kleyser Agueda Lopez - North Carolina Central University


Semiconductor nanowire heterostructures are of interest for potential applications in solar cells and other advanced optoelectronic devices. We report here on synthesis of CdS/CdSxSe1-x nanowires (NWs) using a dual source vapor = liquid – solid technique, and characterization of these NWs with scanning electron microscopy and optical microscopy. We determine the effect of growth parameters, including source / substrate temperatures and time of exposure, on NW size, shape, and composition. The crystal structure and optical properties individual NWs from selected substrates has been mapped using transmission Kikuchi diffraction and photoluminescence (PL) microscopy. NWs consistently exhibit a hexagonal structure, with growth along the c-axis. Strong PL peaks are observed between the expected bandgap emission from CdS and CdSe, confirming formation of CdSxSe1-x. PL peaks vary significantly with intensity along the long axis of the nanowire, suggesting that the NW surface is not uniformly passivated. These nanowires show promise for future investigation and manipulation of energy band gaps contain in CdS/CdSe.

Funder Acknowledgement(s): MSEIP; NCCU DREAM STEM; Marvin Wu; Ceasar Jackson.

Faculty Advisor: Marvin Wu, mwu@nccu.edu

Role: Determine the effect of growth parameters, including source / substrate temperatures and time of exposure, on NW size, shape, and composition. Mapped using transmission Kikuchi diffraction and photoluminescence (PL) microscopy the crystal structure and optical properties individual NWs from selected substrates.

Sidebar

Abstract Locators

  • Undergraduate Abstract Locator
  • Graduate Abstract Locator

This material is based upon work supported by the National Science Foundation (NSF) under Grant No. DUE-1930047. Any opinions, findings, interpretations, conclusions or recommendations expressed in this material are those of its authors and do not represent the views of the AAAS Board of Directors, the Council of AAAS, AAAS’ membership or the National Science Foundation.

AAAS

1200 New York Ave, NW
Washington,DC 20005
202-326-6400
Contact Us
About Us

  • LinkedIn
  • Facebook
  • Instagram
  • Twitter
  • YouTube

The World’s Largest General Scientific Society

Useful Links

  • Membership
  • Careers at AAAS
  • Privacy Policy
  • Terms of Use

Focus Areas

  • Science Education
  • Science Diplomacy
  • Public Engagement
  • Careers in STEM

Focus Areas

  • Shaping Science Policy
  • Advocacy for Evidence
  • R&D Budget Analysis
  • Human Rights, Ethics & Law

© 2023 American Association for the Advancement of Science