• Skip to main content
  • Skip to after header navigation
  • Skip to site footer
ERN: Emerging Researchers National Conference in STEM

ERN: Emerging Researchers National Conference in STEM

  • About
    • About AAAS
    • About the NSF
    • About the Conference
    • Partners/Supporters
    • Project Team
  • Conference
  • Abstracts
    • Undergraduate Abstract Locator
    • Graduate Abstract Locator
    • Abstract Submission Process
    • Presentation Schedules
    • Abstract Submission Guidelines
    • Presentation Guidelines
  • Travel Awards
  • Resources
    • Award Winners
    • Code of Conduct-AAAS Meetings
    • Code of Conduct-ERN Conference
    • Conference Agenda
    • Conference Materials
    • Conference Program Books
    • ERN Photo Galleries
    • Events | Opportunities
    • Exhibitor Info
    • HBCU-UP/CREST PI/PD Meeting
    • In the News
    • NSF Harassment Policy
    • Plenary Session Videos
    • Professional Development
    • Science Careers Handbook
    • Additional Resources
    • Archives
  • Engage
    • Webinars
    • ERN 10-Year Anniversary Videos
    • Plenary Session Videos
  • Contact Us
  • Login

A Bayesian Predictive Simulation for Aquifer Contamination

Faculty #53
Discipline: Mathematics & Statistics
Subcategory: STEM Research
- Central State University
Co-Author(s): Jarrett Barber, Northern Arizona University, Flagstaff, AZ; Victor Ginting, University of Wyoming, Laramie, WY; Felipe Pereira, University of Texas at Dallas, Richardson, TX



In contaminant transport in subsurface we often need to forecast flow patterns. In the flow forecasting, subsurface characterization is an important step. To characterize subsurface properties we establish a statistical description of the subsurface properties that are conditioned to existing dynamic (and static) data. We use a Markov chain Monte Carlo algorithm in a Bayesian statistical description to reconstruct the spatial distribution of two important subsurface properties: permeability and porosity. By using reconstructed permeability and porosity distributions, we predict subsurface flows. In this poster, we present a Bayesian framework for predictive simulation of contaminants in an aquifer.

Funder Acknowledgement(s): NSF's HBCU-UP (Award Abstract No: 1016283)

Faculty Advisor: None Listed,

Sidebar

Abstract Locators

  • Undergraduate Abstract Locator
  • Graduate Abstract Locator

This material is based upon work supported by the National Science Foundation (NSF) under Grant No. DUE-1930047. Any opinions, findings, interpretations, conclusions or recommendations expressed in this material are those of its authors and do not represent the views of the AAAS Board of Directors, the Council of AAAS, AAAS’ membership or the National Science Foundation.

AAAS

1200 New York Ave, NW
Washington,DC 20005
202-326-6400
Contact Us
About Us

  • LinkedIn
  • Facebook
  • Instagram
  • Twitter
  • YouTube

The World’s Largest General Scientific Society

Useful Links

  • Membership
  • Careers at AAAS
  • Privacy Policy
  • Terms of Use

Focus Areas

  • Science Education
  • Science Diplomacy
  • Public Engagement
  • Careers in STEM

Focus Areas

  • Shaping Science Policy
  • Advocacy for Evidence
  • R&D Budget Analysis
  • Human Rights, Ethics & Law

© 2023 American Association for the Advancement of Science