• Skip to main content
  • Skip to after header navigation
  • Skip to site footer
ERN: Emerging Researchers National Conference in STEM

ERN: Emerging Researchers National Conference in STEM

  • About
    • About AAAS
    • About the NSF
    • About the Conference
    • Partners/Supporters
    • Project Team
  • Conference
  • Abstracts
    • Undergraduate Abstract Locator
    • Graduate Abstract Locator
    • Abstract Submission Process
    • Presentation Schedules
    • Abstract Submission Guidelines
    • Presentation Guidelines
  • Travel Awards
  • Resources
    • Award Winners
    • Code of Conduct-AAAS Meetings
    • Code of Conduct-ERN Conference
    • Conference Agenda
    • Conference Materials
    • Conference Program Books
    • ERN Photo Galleries
    • Events | Opportunities
    • Exhibitor Info
    • HBCU-UP/CREST PI/PD Meeting
    • In the News
    • NSF Harassment Policy
    • Plenary Session Videos
    • Professional Development
    • Science Careers Handbook
    • Additional Resources
    • Archives
  • Engage
    • Webinars
    • ERN 10-Year Anniversary Videos
    • Plenary Session Videos
  • Contact Us
  • Login

A Hybrid Control Systems Approach for Sequential Theory in Cancer Treatment

Faculty #82
Discipline: Technology & Engineering
Subcategory: STEM Research
- Prairie View A&M University
Co-Author(s): Wasiu Opeyemi Oduola, Xiangfang Li, LiJun Qian, Prairie View A&M University, Prairie View, TX; Edward R. Dougherty, Texas A&M University, College Station, TX



Objective: Tumorigenesis is due to uncontrolled cell division arising from mutations and alterations in the proliferative controls of the cell population. The fight against tumor growth and development has often relied on combination therapy which has been acclaimed as one of the main standards of care in cancer therapeutics and prevention of drug-related resistances. The toxicity of the combinatorial drugs raises a significant concern whenever patients take two or more drugs concurrently at the maximum tolerated dose. A promising solution in tumor treatment involves the administration of the drugs in an alternating or sequential fashion rather than a simultaneous manner. In this work, we investigate how feasible such an approach is from a mathematical perspective and propose a switched hybrid control systems framework. Methods: We explore the response of tumor cells dynamics to sequential drugs administration with the aid of a time-dependent switching strategy. A transit compartmentalized model is employed to describe the tumor cells progression to death. Results: The design of the time-based drug switching logic ensures the proliferating tumor cells are repressed. Conclusions: Simulation results are provided using the tumor growth dynamics with sequential drugs intake to demonstrate the effectiveness of the proposed method in reducing the tumor size. Significance: This work is the first attempt to provide a switched hybrid control systems framework on sequential drug administration to biomedical researchers and clinicians.

Funder Acknowledgement(s): This material is supported by the National Science Foundation under Grant Number 1238918, 1464387, 1736196, 1601126

Faculty Advisor: None Listed,

Sidebar

Abstract Locators

  • Undergraduate Abstract Locator
  • Graduate Abstract Locator

This material is based upon work supported by the National Science Foundation (NSF) under Grant No. DUE-1930047. Any opinions, findings, interpretations, conclusions or recommendations expressed in this material are those of its authors and do not represent the views of the AAAS Board of Directors, the Council of AAAS, AAAS’ membership or the National Science Foundation.

AAAS

1200 New York Ave, NW
Washington,DC 20005
202-326-6400
Contact Us
About Us

  • LinkedIn
  • Facebook
  • Instagram
  • Twitter
  • YouTube

The World’s Largest General Scientific Society

Useful Links

  • Membership
  • Careers at AAAS
  • Privacy Policy
  • Terms of Use

Focus Areas

  • Science Education
  • Science Diplomacy
  • Public Engagement
  • Careers in STEM

Focus Areas

  • Shaping Science Policy
  • Advocacy for Evidence
  • R&D Budget Analysis
  • Human Rights, Ethics & Law

© 2023 American Association for the Advancement of Science