• Skip to main content
  • Skip to after header navigation
  • Skip to site footer
ERN: Emerging Researchers National Conference in STEM

ERN: Emerging Researchers National Conference in STEM

  • About
    • About AAAS
    • About NSF
    • About the Conference
    • Project Team
    • Advisory Board
  • Conference
  • Abstracts
    • Abstract Submission Process
    • Abstract Submission Guidelines
    • Presentation Guidelines
  • Travel Awards
  • Resources
    • Award Winners
    • Code of Conduct-AAAS Meetings
    • Code of Conduct-ERN Conference
    • Conference Agenda
    • Conference Materials
    • Conference Program Books
    • ERN Photo Galleries
    • Events | Opportunities
    • Exhibitor Info
    • HBCU-UP PI/PD Meeting
    • In the News
    • NSF Harassment Policy
    • Plenary Session Videos
    • Professional Development
    • Science Careers Handbook
    • Additional Resources
    • Archives
  • Engage
    • Webinars
    • ERN 10-Year Anniversary Videos
    • Plenary Session Videos
  • Contact Us
  • Login

To Be or Not to Be: Identifying an Ultra-long Gamma Ray Burst During Early Instrument Observation

Undergraduate #329
Discipline: Physics
Subcategory: Astronomy and Astrophysics

Quianah T. Joyce - University of the Virgin Islands
Co-Author(s): Bruce Gendre, University of the Virgin Islands, St. Thomas, VI, Etelman Observatory, St. Thomas, VI; Guilia Stratta, University of Urbino, Urbino, Italy; Jean-Luc Atteia, L'Institut de Recherche en Astrophysique et Planétologie (IRAP), Toulouse, France; Norton Brice Orange, OrangeWave, Inc., Charleston, North Carolina, Michel Boer, ARTEMIS, CNRS/OCA, Nice, France; David Morris, University of the Virgin Islands, St. Thomas, VI



Unique progenitors and a thermal component not present in short and long gamma ray bursts have distinguished ultra-long gamma ray bursts as a new class of events. Their extensive durations can theoretically allow for pointing sensitive instruments towards the event during its prompt phase, however, this is complicated as the nature of the event is initially unclear. A burst is only deemed “ultra-long” after it has been observed for thousands of seconds and following analysis has been conducted. Consequently, the question arises: can we predict an event to be an ultra-long gamma ray burst, i.e. duration of more than 3 hours, while high-energy instruments are only observing the first tens/hundreds of seconds of the burst’s emission? We have tested the hypothesis that the early stages of the prompt phase may reveal intrinsic properties that indicate that a burst is ultra-long, using data from Swift’s Burst Alert Telescope. For this purpose, we have analyzed and compared the spectral properties in the first minutes of the prompt phases of ultra-long gamma ray bursts, as well as long gamma ray bursts of standard and extended durations. Based on our results, the spectro-temporal properties are inconclusive for discriminating between ultra-long and long gamma ray bursts. Pass a certain threshold, the probability that a burst is ultra-long is large enough so that follow up observation is worth investigating. Future work may include building a larger sample of ultra-long candidates to analyze, however, ultra-long gamma ray bursts are rare in occurrence and building a fruitful sample would take a significant amount of time. This research made use of the studies and findings by Gendre et. al. 2013, Boer et. al. 2014, and Piro et. al. 2015.

Not Submitted

Funder Acknowledgement(s): Conducting this research was made possible by NASA grants NNX13AD28A and NNX15AP95A, as well as the University of the Virgin Islands and the Etelman Observatory.

Faculty Advisor: Bruce Gendre, bruce.gendre@gmail.com

Role: For this research, I was responsible for producing the spectra and corresponding spectral properties used in our comparative analysis. This included retrieving the data for our samples from our instrument used in our study, NASA's Swift satellite, specifically data from the Burst Alert Telescope (BAT). This data had to be cleaned and sorted, and I made the required response matrices and quality maps for each event file we used to produce correct and accurate spectra. I made histograms for some of our samples and in addition, I also aided with comparing our resulting spectral properties.

Sidebar

Abstract Locators

  • Undergraduate Abstract Locator
  • Graduate Abstract Locator

This material is based upon work supported by the National Science Foundation (NSF) under Grant No. DUE-1930047. Any opinions, findings, interpretations, conclusions or recommendations expressed in this material are those of its authors and do not represent the views of the AAAS Board of Directors, the Council of AAAS, AAAS’ membership or the National Science Foundation.

AAAS

1200 New York Ave, NW
Washington,DC 20005
202-326-6400
Contact Us
About Us

  • LinkedIn
  • Facebook
  • Instagram
  • Twitter
  • YouTube

The World’s Largest General Scientific Society

Useful Links

  • Membership
  • Careers at AAAS
  • Privacy Policy
  • Terms of Use

Focus Areas

  • Science Education
  • Science Diplomacy
  • Public Engagement
  • Careers in STEM

Focus Areas

  • Shaping Science Policy
  • Advocacy for Evidence
  • R&D Budget Analysis
  • Human Rights, Ethics & Law

© 2023 American Association for the Advancement of Science