• Skip to main content
  • Skip to after header navigation
  • Skip to site footer
ERN: Emerging Researchers National Conference in STEM

ERN: Emerging Researchers National Conference in STEM

  • About
    • About AAAS
    • About the NSF
    • About the Conference
    • Partners/Supporters
    • Project Team
  • Conference
  • Abstracts
    • Undergraduate Abstract Locator
    • Graduate Abstract Locator
    • Abstract Submission Process
    • Presentation Schedules
    • Abstract Submission Guidelines
    • Presentation Guidelines
  • Travel Awards
  • Resources
    • Award Winners
    • Code of Conduct-AAAS Meetings
    • Code of Conduct-ERN Conference
    • Conference Agenda
    • Conference Materials
    • Conference Program Books
    • ERN Photo Galleries
    • Events | Opportunities
    • Exhibitor Info
    • HBCU-UP/CREST PI/PD Meeting
    • In the News
    • NSF Harassment Policy
    • Plenary Session Videos
    • Professional Development
    • Science Careers Handbook
    • Additional Resources
    • Archives
  • Engage
    • Webinars
    • ERN 10-Year Anniversary Videos
    • Plenary Session Videos
  • Contact Us
  • Login

Using the Position of Digestive Contents to Map Chlorinated Hydrocarbon (CHC) Movement Through the Smooth Dogfish (Mustelus canis)

Undergraduate #213
Discipline: Ecology Environmental and Earth Sciences
Subcategory: Ecology

Tyler Plum - West Virginia University
Co-Author(s): Jhamyllia Rice and Eric May, University of Maryland Eastern Shore, Princess Anne, MD



Many studies have found that organic pesticides, especially chlorinated hydrocarbons, are absorbed by organisms through bioaccumulation in most marine ecosystems, usually in food chain bioaccumulation and magnification. Sharks are one example of a commercially and recreationally valuable organism that could be affected by these contaminants, as they are at a greater threat from bio accumulation, being top level predators. It is therefore important to understand how these chlorinated hydrocarbons are absorbed from their diet, and how they move as digestion occurs. To test this, we sampled a number of smooth dogfish, Mustelus canis, and attempted to correlate the results of gut content position analyses at the time of death to chlorinated hydrocarbon concentrations in the liver. Chlorinated hydrocarbon concentrations were expected to spike at different points in digestion, and by comparing the results of multiple shark diet analyses, which were sacrificed at varying stages of digestion, to their liver concentrations, it was assumed a conceptual map of how these chemicals are absorbed during digestion could be created. In reality, no chlorinated hydrocarbons were found in any of the liver samples, a highly unexpected event. It is assumed that either 1) chlorinated hydrocarbons are absorbed at a continuous rate from the liver into the bodily tissues (i.e. muscle), leaving them virtually absent from the liver, or 2) that the sharks are not absorbing chlorinated hydrocarbons into their body or liver because they are excreted as waste at a rate that does not allow adequate time for absorption. Future research into how the chlorinated hydrocarbons react with the sharks’ biochemistry.

Funder Acknowledgement(s): We would like to thank the National Science Foundation for the support and funding for this research.

Faculty Advisor: Eric May,

Sidebar

Abstract Locators

  • Undergraduate Abstract Locator
  • Graduate Abstract Locator

This material is based upon work supported by the National Science Foundation (NSF) under Grant No. DUE-1930047. Any opinions, findings, interpretations, conclusions or recommendations expressed in this material are those of its authors and do not represent the views of the AAAS Board of Directors, the Council of AAAS, AAAS’ membership or the National Science Foundation.

AAAS

1200 New York Ave, NW
Washington,DC 20005
202-326-6400
Contact Us
About Us

  • LinkedIn
  • Facebook
  • Instagram
  • Twitter
  • YouTube

The World’s Largest General Scientific Society

Useful Links

  • Membership
  • Careers at AAAS
  • Privacy Policy
  • Terms of Use

Focus Areas

  • Science Education
  • Science Diplomacy
  • Public Engagement
  • Careers in STEM

Focus Areas

  • Shaping Science Policy
  • Advocacy for Evidence
  • R&D Budget Analysis
  • Human Rights, Ethics & Law

© 2023 American Association for the Advancement of Science