• Skip to main content
  • Skip to after header navigation
  • Skip to site footer
ERN: Emerging Researchers National Conference in STEM

ERN: Emerging Researchers National Conference in STEM

  • About
    • About AAAS
    • About the NSF
    • About the Conference
    • Partners/Supporters
    • Project Team
  • Conference
  • Abstracts
    • Undergraduate Abstract Locator
    • Graduate Abstract Locator
    • Abstract Submission Process
    • Presentation Schedules
    • Abstract Submission Guidelines
    • Presentation Guidelines
  • Travel Awards
  • Resources
    • Award Winners
    • Code of Conduct-AAAS Meetings
    • Code of Conduct-ERN Conference
    • Conference Agenda
    • Conference Materials
    • Conference Program Books
    • ERN Photo Galleries
    • Events | Opportunities
    • Exhibitor Info
    • HBCU-UP/CREST PI/PD Meeting
    • In the News
    • NSF Harassment Policy
    • Plenary Session Videos
    • Professional Development
    • Science Careers Handbook
    • Additional Resources
    • Archives
  • Engage
    • Webinars
    • ERN 10-Year Anniversary Videos
    • Plenary Session Videos
  • Contact Us
  • Login

Developing a Test Stand for Lifetime Measurements Using a Narrow Gap Detector

Undergraduate #282
Discipline: Physics
Subcategory: Astronomy and Astrophysics

Omani Tuitt - University of the Virgin Islands – St. Thomas


The University of the Virgin Islands (UVI) recently won a proposal ‘The First Four-Year Physics and Astronomy Degree at the University of the Virgin Islands; A new Era in Caribbean Participation in NASA Science’ in collaboration with NASA Goddard Space Flight Center (GSFC). The proposal included building a detector life-test chamber at UVI to support the degree program as well as assist NASA by running tests on detector components and reporting the results. The team at GSFC is developing X-ray polarimeters that can be used in detecting and imaging astrophysical sources such as black holes and neutron stars. The purpose of our research is to understand the effects that the degradation of gas has on the performance of the detectors. The current generation of time projection polarimeter incorporates a narrow gap detector assembled with epoxy. The addition of the epoxy allows a smaller gap with the minimal amount of changes from the original design, enhancing the performance of the detectors. With the use of epoxy, lifetime measurements have to be made to see how the epoxy detectors compared to previous iterations. We have been studying the effects on the narrow gap detector in the Mahaffey chamber in order to determine whether the epoxy affects the cleanliness of the gas. Tests have been conducted with a residual gas analyzer (RGA) in order to monitor the cleanliness of the gas inside of the Mahaffey chamber while being baked out. Results show that the detector is in fact getting cleaner as time progresses. The plan is to recreate a detector that meets the performance criteria for 2 years and has minimal degradation.

Funder Acknowledgement(s): The research is funded by NASA grant: NNX13AD28A

Faculty Advisor: David Morris,

Sidebar

Abstract Locators

  • Undergraduate Abstract Locator
  • Graduate Abstract Locator

This material is based upon work supported by the National Science Foundation (NSF) under Grant No. DUE-1930047. Any opinions, findings, interpretations, conclusions or recommendations expressed in this material are those of its authors and do not represent the views of the AAAS Board of Directors, the Council of AAAS, AAAS’ membership or the National Science Foundation.

AAAS

1200 New York Ave, NW
Washington,DC 20005
202-326-6400
Contact Us
About Us

  • LinkedIn
  • Facebook
  • Instagram
  • Twitter
  • YouTube

The World’s Largest General Scientific Society

Useful Links

  • Membership
  • Careers at AAAS
  • Privacy Policy
  • Terms of Use

Focus Areas

  • Science Education
  • Science Diplomacy
  • Public Engagement
  • Careers in STEM

Focus Areas

  • Shaping Science Policy
  • Advocacy for Evidence
  • R&D Budget Analysis
  • Human Rights, Ethics & Law

© 2023 American Association for the Advancement of Science