Emerging Researchers National (ERN) Conference

nsf-logo[1]

  • About
    • About AAAS
    • About the NSF
    • About the Conference
    • Partners/Supporters
    • Project Team
  • Conference
  • Abstracts
    • Abstract Submission Process
    • Presentation Schedules
    • Abstract Submission Guidelines
    • Presentation Guidelines
    • Undergraduate Abstract Locator (2020)
    • Graduate Abstract Locator (2020)
    • Faculty Abstract Locator (2020)
  • Travel Awards
  • Resources
    • App
    • Award Winners
    • Code of Conduct-AAAS Meetings
    • Code of Conduct-ERN Conference
    • Conference Agenda
    • Conference Materials
    • Conference Program Books
    • ERN Photo Galleries
    • Events | Opportunities
    • Exhibitor Info
    • HBCU-UP/CREST PI/PD Meeting
    • In the News
    • NSF Harassment Policy
    • Plenary Session Videos
    • Professional Development
    • Science Careers Handbook
    • Additional Resources
    • Archives
  • Engage
    • Webinars
    • Video Contest
    • Video Contest Winners
    • ERN 10-Year Anniversary Videos
    • Plenary Session Videos
  • Contact Us

Heat Transfer Enhancement in Wavy Micro-channels via Multi-harmonic Surfaces

Faculty #66
Discipline: Technology & Engineering
Subcategory: STEM Research

Arturo Pacheco-Vega - California State University, Los Angeles
Co-Author(s): Justin Moon, California State University, Los Angeles, Los Angeles, CA 90032; J. Rafael Pacheco, SAP America Inc., Tempe, AZ 85281.



In this study, three-dimensional numerical simulations were performed to investigate the enhancement of heat transfer in multi-harmonic micro-scale wavy channels. The focus was on the influence of channel surface-topography on the enhancing mechanisms. A single-wave device of 0.5 mm by 0.5 mm by 20 mm length is used as baseline, and new designs are built with harmonic-type surfaces. The channel is enclosed by a solid block, with the bottom surface within the sinusoidal region being exposed to a 47 W/cm2 heat flux. The numerical solutions of the governing equations for an incompressible laminar flow and conjugate heat transfer were obtained via finite elements. By using the ratio of the Nusselt number for wavy to straight channels, a parametric analysis ? for a set of cold-water flowrates (Re = 50, 100, and 150) ? showed that the addition of harmonic surfaces enhances the transfer of energy, and that such ratio achieves the highest value with wave harmonic numbers of n = +/- 2. Use of a performance factor (PF), defined as the ratio of the Nusselt number to the pressure drop, shows that, surprisingly, the proposed wavy multi-harmonic channels are not as efficient as the single-wave geometries. This outcome is thought to be, primarily, due to the uncertainty associated with the definition of the Nusselt number used in this study, and establishes a direction to investigate the development of a more accurate definition.

Funder Acknowledgement(s): This work has been supported by an NSF HRD-1547723 grant.

Faculty Advisor: None Listed,
NSF Affiliation: CREST

ERN Conference

The 2022 ERN Conference has been postponed.

Full Notice

What’s New

  • Congratulations to Zakiya Wilson-Kennedy on her 2021 AAAS Fellowship
  • Event Vaccination and Liability Policy
  • Webinars
  • Events|Opportunities
  • AAAS CEO Comments on Social Unrest, Racism, and Inequality
  • Maintaining Accessibility in Online Teaching During COVID-19
  • In the News
  • HBCU/CREST PI/PD Meeting

Conference Photos

ERN Conference Photo Galleries

Awards

ERN Conference Award Winners

Checking In

nsf-logo[1]

This material is based upon work supported by the National Science Foundation (NSF) under Grant No. DUE-1930047. Any opinions, findings, interpretations, conclusions or recommendations expressed in this material are those of its authors and do not represent the views of the AAAS Board of Directors, the Council of AAAS, AAAS’ membership or the National Science Foundation.

AAAS

1200 New York Ave, NW Washington,DC 20005
202-326-6400
Contact Us
About Us

The World's Largest General Scientific Society

Useful Links

  • Membership
  • Careers at AAAS
  • Privacy Policy
  • Terms of Use

Focus Areas

  • Science Education
  • Science Diplomacy
  • Public Engagement
  • Careers in STEM

 

  • Shaping Science Policy
  • Advocacy for Evidence
  • R&D Budget Analysis
  • Human Rights, Ethics & Law
© 2022 American Association for the Advancement of Science