• Skip to main content
  • Skip to after header navigation
  • Skip to site footer
ERN: Emerging Researchers National Conference in STEM

ERN: Emerging Researchers National Conference in STEM

  • About
    • About AAAS
    • About the NSF
    • About the Conference
    • Partners/Supporters
    • Project Team
  • Conference
  • Abstracts
    • Undergraduate Abstract Locator
    • Graduate Abstract Locator
    • Abstract Submission Process
    • Presentation Schedules
    • Abstract Submission Guidelines
    • Presentation Guidelines
  • Travel Awards
  • Resources
    • Award Winners
    • Code of Conduct-AAAS Meetings
    • Code of Conduct-ERN Conference
    • Conference Agenda
    • Conference Materials
    • Conference Program Books
    • ERN Photo Galleries
    • Events | Opportunities
    • Exhibitor Info
    • HBCU-UP/CREST PI/PD Meeting
    • In the News
    • NSF Harassment Policy
    • Plenary Session Videos
    • Professional Development
    • Science Careers Handbook
    • Additional Resources
    • Archives
  • Engage
    • Webinars
    • ERN 10-Year Anniversary Videos
    • Plenary Session Videos
  • Contact Us
  • Login

Development of an aLgae-based Carbon Capture and Utilization System to Mitigate CO2 Emissions

Undergraduate #443
Discipline: Technology and Engineering
Subcategory: Pollution/Toxic Substances/Waste
Session: 2

Darian Parker - University of Kentucky
Co-Author(s): Stephanie Kesner; Daniel Mohler; Eduardo Santillan-Jimenez; Michael Wilson; Mark Crocker



The purpose of this project is to research and develop microalgae-based technology that can beneficially reuse CO2 emissions. Like plants, algae can consume and use CO2 to grow photosynthetically, albeit due to the fact that microalgae grows at a much faster rate than plants they also consume much more CO2. Algae, being one of the fastest growing organisms on the planet, can double their mass every day. After screening over 150 strains of algae, Scenedesmus acutus was identified as the preferred strain. This strain shows continued growth over a wide range of temperature and pH, is easily harvested and displays high (~50 wt%) protein and a relatively large (~15 wt%) lipid content. In this project, photobioreactors (PBRs) are used to control the growth environment of microalgae and to provide them with CO2. Compared to ponds – the approach most commonly used to grow algae ? PBRs can better cope with limited land availability and constitute a closed loop system for algae cultivation. When growing algae using CO2 gas, PBRs can afford higher algae growth rates compared to open pond systems. With the proper growing conditions, algae can consume and use up to 75% of the CO2 gas that it is exposed to. Once the algae cells uptake CO2, they metabolize it into valuable proteins, carbohydrates and lipids that can be harvested and valorized. To do so, this project uses a polymeric flocculent, which allows to harvest the algae cheaply and simply. After flocculation, the harvested algae are placed on a nylon belt allowing gravity to filter extracellular water through a mesh that retains the dewatered algal biomass. At the end of this process, both water and nutrients can be recycled to the algae growth system efficiently. Lipids can then be extracted from the dewatered algae via in situ transesterification in a single step extraction process that uses a hexane/methanol/water mixture. In addition to lipids, carotenoids can also be extracted from the algae by coupling this extraction process with acetone-water HLPC. After combining the defatted algae with polymers and additives, the resulting biopolymer ? namely, polyhydroxyalkanoate (PHA) ? constitutes a low-cost, renewable alternative to some traditional plastics.

Funder Acknowledgement(s): NSF ; LSAMP

Faculty Advisor: Eduardo Santillan Jiminez, esant3@uky.edu

Role: I assisted in the gathering and organizing of data which includes performing lab tests on algae samples and the building and putting together of our photobioreactor system.

Sidebar

Abstract Locators

  • Undergraduate Abstract Locator
  • Graduate Abstract Locator

This material is based upon work supported by the National Science Foundation (NSF) under Grant No. DUE-1930047. Any opinions, findings, interpretations, conclusions or recommendations expressed in this material are those of its authors and do not represent the views of the AAAS Board of Directors, the Council of AAAS, AAAS’ membership or the National Science Foundation.

AAAS

1200 New York Ave, NW
Washington,DC 20005
202-326-6400
Contact Us
About Us

  • LinkedIn
  • Facebook
  • Instagram
  • Twitter
  • YouTube

The World’s Largest General Scientific Society

Useful Links

  • Membership
  • Careers at AAAS
  • Privacy Policy
  • Terms of Use

Focus Areas

  • Science Education
  • Science Diplomacy
  • Public Engagement
  • Careers in STEM

Focus Areas

  • Shaping Science Policy
  • Advocacy for Evidence
  • R&D Budget Analysis
  • Human Rights, Ethics & Law

© 2023 American Association for the Advancement of Science