• Skip to main content
  • Skip to after header navigation
  • Skip to site footer
ERN: Emerging Researchers National Conference in STEM

ERN: Emerging Researchers National Conference in STEM

  • About
    • About AAAS
    • About NSF
    • About the Conference
    • Project Team
    • Advisory Board
  • Conference
  • Abstracts
    • Abstract Submission Process
    • Abstract Submission Guidelines
    • Presentation Guidelines
  • Travel Awards
  • Resources
    • Award Winners
    • Code of Conduct-AAAS Meetings
    • Code of Conduct-ERN Conference
    • Conference Agenda
    • Conference Materials
    • Conference Program Books
    • ERN Photo Galleries
    • Events | Opportunities
    • Exhibitor Info
    • HBCU-UP PI/PD Meeting
    • In the News
    • NSF Harassment Policy
    • Plenary Session Videos
    • Professional Development
    • Science Careers Handbook
    • Additional Resources
    • Archives
  • Engage
    • Webinars
    • ERN 10-Year Anniversary Videos
    • Plenary Session Videos
  • Contact Us
  • Login

Quantum-dot-conjugated Graphene Oxide as an Optical Tool for Biosensor

Graduate #80
Discipline: Nanoscience
Subcategory: Materials Science

Erin Jenrette - Norfolk State University
Co-Author(s): Sangram K. Pradhan, Gugu Rutherford, Jasmin Flowers, Duc Ha, and Aswini K. Pradhan, Norfolk State University, Norfolk, VA



We have demonstrated a novel platform of quantum dots (QDs) core-shell conjugated graphene oxide (GO) biosensor for effective protein detection. The advantage in making core shell nanostructure allows preserving stable QDs, by improving quantum yield, and lowering the toxicity of the core. Both QDs and GO are efficient nanoparticle systems that can potentially be used for drug delivery, diagnosis, and biosensors scaffolds. However, our study indicates that the conjugation between these two nanoparticle systems makes their properties even more effective. The change in fluorescent intensity through fluorescence resonance energy transfer from quantum dots to GO produced a novel method for detection of the target and allows for the optimization of the recognition limit of Bovine serum albumin (BSA) due to efficient fluorescence resonance energy transfer as observed through time resolved relaxation spectroscopy. It is observed that the quenching of photoluminescence peak of QDs due to GO shell produced an applicable strategy and could be conveniently extended for detection of other biomolecules. We obtained significantly enhanced spectral signal through successful conjugation of GO with CdSe/CdS core shell, which can potentially be used for the detection of biomolecules with high sensitivity and selectivity. Our study underlines the efficiency of QD conjugated GO core shell in spectral detection of proteins even at very low concentration (0.25 mmol).

Not Submitted

Funder Acknowledgement(s): NSF-CREST (CNBMD) Grant number HRD 1036494 NSF-RISE

Faculty Advisor: Aswini Pradhan, apradhan@nsu.edu

Sidebar

Abstract Locators

  • Undergraduate Abstract Locator
  • Graduate Abstract Locator

This material is based upon work supported by the National Science Foundation (NSF) under Grant No. DUE-1930047. Any opinions, findings, interpretations, conclusions or recommendations expressed in this material are those of its authors and do not represent the views of the AAAS Board of Directors, the Council of AAAS, AAAS’ membership or the National Science Foundation.

AAAS

1200 New York Ave, NW
Washington,DC 20005
202-326-6400
Contact Us
About Us

  • LinkedIn
  • Facebook
  • Instagram
  • Twitter
  • YouTube

The World’s Largest General Scientific Society

Useful Links

  • Membership
  • Careers at AAAS
  • Privacy Policy
  • Terms of Use

Focus Areas

  • Science Education
  • Science Diplomacy
  • Public Engagement
  • Careers in STEM

Focus Areas

  • Shaping Science Policy
  • Advocacy for Evidence
  • R&D Budget Analysis
  • Human Rights, Ethics & Law

© 2023 American Association for the Advancement of Science